Controllable transportation of microparticles along structured waveguides by the plasmonic spin-hall effect

Author:

Liu Weiwei1,Zhang Yuquan1,Min Changjun1,Yuan Xiaocong1

Affiliation:

1. Shenzhen University

Abstract

With the nanoscale integration advantage of near field photonics, controllable manipulation and transportation of micro-objects have possessed plentiful applications in the fields of physics, biology and material sciences. However, multifunctional optical manipulation like controllable transportation and synchronous routing by nano-devices are limited and rarely reported. Here we propose a new type of Y-shaped waveguide optical conveyor belt, which can transport and route particles along the structured waveguide based on the plasmonic spin-hall effect. The routing of micro-particles in different branches is determined by the optical force components difference at the center of the Y junction along the two branches of the waveguide. The influence of light source and structural parameters on the optical forces and transportation capability are numerically studied. The results illustrate that the proposed structured waveguide optical conveyor belt can transport the microparticles controllably in different branches of the waveguide. Due to the selective transportation ability of microparticles by the 2D waveguide, our work shows great application potential in the region of on-chip optical manipulation.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Shenzhen Peacock Plan

Science and Technology Planning Project of Shenzhen Municipality

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3