Affiliation:
1. The Hong Kong Polytechnic University
Abstract
It is well recognized that it is challenging to realize high-fidelity and high-robustness ghost transmission through complex media in free space using coherent light source. In this paper, we report a new method to realize high-fidelity and high-robustness ghost transmission through complex media by generating random amplitude-only patterns as 2D information carriers using physics-driven untrained neural network (UNN). The random patterns are generated to encode analog signals (i.e., ghost) without any training datasets and labeled data, and are used as information carriers in a free-space optical channel. Coherent light source modulated by the random patterns propagates through complex media, and a single-pixel detector is utilized to collect light intensities at the receiving end. A series of optical experiments have been conducted to verify the proposed approach. Experimental results demonstrate that the proposed method can realize high-fidelity and high-robustness analog-signal (ghost) transmission in complex environments, e.g., around a corner, or dynamic and turbid water. The proposed approach using the designed physics-driven UNN could open an avenue for high-fidelity free-space ghost transmission through complex media.
Funder
Hong Kong Research Grants Council
Guangdong Basic and Applied Basic Research Foundation
Hong Kong Polytechnic University
Subject
Atomic and Molecular Physics, and Optics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献