Simultaneous modal phase and group velocity matching in microstructured optical fibers for second harmonic generation with ultrashort pulses

Author:

Tishchenko Artemii1ORCID,Geernaert Thomas1,Vermeulen Nathalie1ORCID,Berghmans Francis1ORCID,Baghdasaryan Tigran1ORCID

Affiliation:

1. Vrije Universiteit Brussel

Abstract

Optical fibers provide a favorable medium for nonlinear optical processes owing to the small mode field size and concurrently high optical intensity combined with the extended interaction lengths. Second harmonic generation (SHG) is one of those processes that has been demonstrated in silica glass optical fibers. Since silica is centrosymmetric, generating SHG in an optical fiber requires poling of the glass. In addition and when one wants to use ultrashort pulses for SHG, achieving both phase and group velocity matching is crucial. Although fibers that feature either modal phase velocity or group velocity matching for SHG have been reported, the possibility of simultaneous modal phase and group velocity matching was never reported before. In this paper we address this challenge, and for the first time to our knowledge, we show that it is feasible to do so with silica microstructured optical fibers featuring at least one ring of air holes in the cladding and a heavily Germanium doped core (above 25 mol.%) by exploiting the LP01(ω) and LP02(2ω) modes at 1.06 µm pump and 0.53 µm second harmonic wavelengths. This finding can greatly impact applications requiring waveguide based SHG generation with ultrashort pulses, including microscopy, material characterization and nonlinear imaging.

Funder

Flanders

FWO Hercules Foundation–Flanders

Methusalem Foundation

OZR of Vrije Universiteit Brussel

Industrial Research Fund

Interreg

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3