Image-plane self-calibration in interferometry

Author:

Carilli Christopher L.ORCID,Nikolic Bojan1,Thyagarajan Nithyanandan2ORCID

Affiliation:

1. University of Cambridge

2. Commonwealth Scientific and Industrial Research Organisation

Abstract

We develop a process of image-plane self-calibration for interferometric imaging data. The process is based on shape–orientation–size (SOS) conservation for the principal triangle in an image generated from the three fringes made from a triad of receiving elements, in situations where interferometric phase errors can be factorized into element-based terms. The basis of the SOS conservation principle is that, for a three-element array, the only possible image corruption due to an element-based phase screen is a tilt of the aperture plane, leading to a shift in the image plane. Thus, an image made from any three-element interferometer represents a true image of the source brightness, modulo an unknown translation. Image-plane self-calibration entails deriving the unknown translations for each triad image via cross-correlation of the observed triad image with a model image of the source brightness. After correcting for these independent shifts, and summing the aligned triad images, a good image of the source brightness is generated from the full array, recovering source structure at diffraction-limited resolution. The process is iterative, using improved source models based on previous iterations. We demonstrate the technique in a high signal-to-noise context, and include a configuration based on radio astronomical facilities, and simple models of double sources. We show that the process converges for the simple models considered, although convergence is slower than for aperture-plane self-calibration for large- N arrays. As currently implemented, the process is most relevant for arrays with a small number of elements. More generally, the technique provides geometric insight into closure phase and the self-calibration process. The technique is generalizable to non-astronomical interferometric imaging applications across the electromagnetic spectrum.

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3