Affiliation:
1. University of Chinese Academy of Sciences
2. Chinese Academy of Sciences
Abstract
Hyperspectral imagers are developing towards high resolution, high detection sensitivity, broad spectra, and wide coverage, which means that hyperspectral data are getting more and more substantial. This brings a great challenge to data storage and real-time transmission of hyperspectral data. A compression method based on Tucker decomposition and CANDECOMP/PARAFAC decomposition (TD-CP) is proposed. The hyperspectral data are treated as a third-order tensor. First, TD is performed on the hyperspectral data to obtain a core tensor and three factor matrices, and then CP decomposition is performed on the core tensor. Compared with principal component analysis (PCA)
+
JPEG2000, TD, and CP, TD-CP can retain spatial information and spectral information better at the same time, and running time is shorter.
Funder
Chinese Academy of Sciences
National Natural Science Foundation of China
Subject
Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献