Simulating random optical fields: tutorial

Author:

Hyde Milo WiltORCID

Abstract

Numerous applications—including optical communications, directed energy, remote sensing, and optical tweezing—utilize the principles of statistical optics and optical coherence theory. Simulation of these phenomena is, therefore, critical in the design of new technologies for these and other such applications. For this reason, this tutorial describes how to generate random electromagnetic field instances or realizations consistent with a given or desired cross-spectral density matrix for use in wave optics simulations. This tutorial assumes that the reader has knowledge of the fundamental principles of statistical optics and optical coherence theory. An extensive reference list is provided where the necessary background information can be found. We begin this tutorial with a brief summary of the coherent-mode representation and the superposition rule of stochastic electromagnetic fields as these foundational ideas form the basis of all known synthesis techniques. We then present optical field expressions that apply these concepts before discussing proper sampling and discretization. We finally compare and contrast coherent-mode- and superposition-rule-based synthesis approaches, discussing the pros and cons of each. As an example, we simulate the synthesis and propagation of an electromagnetic partially coherent field from the literature. We compare simulated or sample statistics to theory to verify that we have successfully produced the desired field and are capturing its propagation behaviors. All computer programs, including detailed explanations of the source code, are provided with this tutorial. We conclude with a brief summary.

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference122 articles.

1. The structure of partially coherent fields;GburWolf,2010

2. Partially coherent beam propagation in atmospheric turbulence [Invited]

3. Generation of partially coherent beams;CaiVisser,2017

4. Applications of optical coherence theory;KorotkovaVisser,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Controllable nonlinear propagation of partially incoherent Airy beams;Optics Express;2023-06-21

2. Comparison of Algorithms for Simulating Partially Coherent Systems;2023 34th Irish Signals and Systems Conference (ISSC);2023-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3