Affiliation:
1. University of Southern California
Abstract
Glucose stimulated insulin secretion is mediated by glucose metabolism via oxidative phosphorylation generating ATP that triggers membrane depolarization and exocytosis of insulin. In stressed beta cells, glucose metabolism is remodeled, with enhanced glycolysis uncoupled from oxidative phosphorylation, resulting in the impaired glucose-mediated insulin secretion characteristic of diabetes. Relative changes in glycolysis and oxidative phosphorylation can be monitored in living cells using the 3-component fitting approach of fluorescence lifetime imaging microscopy (FLIM). We engrafted pancreatic islets onto the iris to permit in vivo FLIM monitoring of the trajectory of glucose metabolism. The results show increased oxidative phosphorylation of islet cells (∼90% beta cells) in response to hyperglycemia; in contrast red blood cells traversing the islets maintained exclusive glycolysis as expected in the absence of mitochondria.
Funder
Larry L. Hillblom Foundation
Subject
Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献