Inverse design of a photonic moiré lattice waveguide towards improved slow light performances

Author:

Nasidi Ibrahim1,Hao Ran,Jin SangZhong,Li Erping1

Affiliation:

1. Zhejiang University

Abstract

Slow light waveguides in photonic crystals are engineered using a conventional method or a deep learning (DL) method, which is data-intensive and suffers from data inconsistency, and both methods result in overlong computation time with low efficiency. In this paper, we overcome these problems by inversely optimizing the dispersion band of a photonic moiré lattice waveguide using automatic differentiation (AD). The AD framework allows the creation of a definite target band to which a selected band is optimized, and a mean square error (MSE) as an objective function between the selected and the target bands is used to efficiently compute gradients using the autograd backend of the AD library. Using a limited-memory Broyden-Fletcher-Goldfarb-Shanno minimizer algorithm, the optimization converges to the target band, with the lowest MSE value of 9.844×10−7, and a waveguide that produces the exact target band is obtained. The optimized structure supports a slow light mode with a group index of 35.3, a bandwidth of 110 nm, and a normalized-delay-bandwidth-product of 0.805, which is a 140.9% and 178.9% significant improvement if compared to conventional and DL optimization methods, respectively. The waveguide could be utilized in slow light devices for buffering.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3