Affiliation:
1. Guangxi Normal University
2. Shanghai University
Abstract
An in-line reflective dual-parameters fiber-optic sensor is proposed in this work, whereas it is experimentally verified by measuring both the liquid level and the local temperature distribution simultaneously. The proposed sensor configuration comprises a single-mode fiber (SMF), a tapered few-mode fiber (TFMF), as well as a silver-coated capillary tube. The extracted experimental results indicate that the liquid level only affects the power of the resonant dips, while having little impact on the wavelength. On the other hand, both the wavelength and the power of the resonant dips vary with the temperature change. Therefore, the simultaneous measurement of the liquid level and temperature can be realized according to the different responses of the resonant dips to the liquid level and temperature. The obtained liquid level and temperature sensitivities can reach the values of 0.106 dB/mm and 0.029 dB/°C, 35 pm/°C, respectively. The sensor exhibits the advantages of high stability and low cost, the demodulation relates on only one wavelength which can shorten the scanning wavelength range during measurement. The proposed sensor can be potentially applied where accurate and simultaneous measurements of both temperature and liquid level are required.
Funder
Guangxi Key Research and Development Program
National Natural Science Foundation of China
Guangxi One Thousand Young and Middle-aged College and University Backbone Teachers Cultivation Program and Innovation Project of Guangxi Graduate Education
Subject
Atomic and Molecular Physics, and Optics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献