Optimization of brightness in a Nd:YAG laser by maximizing the single-mode power factor with an intra-cavity spatial light modulator

Author:

Hu Cong1ORCID,Xiao Yu12,He Yuhang1,Liu Yusong1,Song Yuyan1,Tang Xiahui12

Affiliation:

1. Huazhong University of Science and Technology

2. Shenzhen Huazhong University of Science and Technology Research Institute

Abstract

We report a simple and effective approach for designing resonators with high brightness and high mode discrimination based on optimizing the single-mode power factor of the fundamental mode, which represents the total power extracted by the fundamental mode from the gain medium. By optimizing the single-mode power factor of the fundamental mode, the cavity can be designed to operate in mono-mode, increasing mode purity and improving brightness significantly. Our method is verified on a digital laser with a spatial light modulator as the rear mirror, and the loaded phase profile is acquired by a simulated annealing algorithm. As a result, the optimized resonator with a Fresnel number of 7.2 operates in a single fundamental mode, and the brightness of the output beam yields 240% and 276% improvement, compared with conventional plane–plane and plane–concave resonators, respectively. This approach is ready to be applied to more sophisticated mode selection and may serve as a general method for designing cavities with high efficiency and high brightness.

Funder

Science, Technology and Innovation Commission of Shenzhen Municipality

National Natural Science Foundation of China

National Key Research and Development Program of China

The Open-Foundation of Key Laboratory of Laser Device Technology, China North Industries Group Corporation Limited

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3