Role of pixel design and emission wavelength on the light extraction of nitride-based micro-LEDs

Author:

Vögl Florian12ORCID,Avramescu Adrian1,Knorr Fabian1,Lex Andreas12,Waag Andreas2,Hetzl Martin1,von Malm Norwin1

Affiliation:

1. ams-OSRAM International GmbH

2. Technische Universität Braunschweig

Abstract

Micro-light emitting diodes (µ-LEDs) suffer from a drastic drop in internal quantum efficiency that emerges with the miniaturization of pixels down to the single micrometer size regime. In addition, the light extraction efficiency (LEE) and far field characteristics change significantly as the pixel size approaches the wavelength of the emitted light. In this work, we systematically investigate the fundamental optical properties of nitride-based µ-LEDs with the focus on pixel sizes from 1 µm to 5 µm and various pixel sidewall angles from 0 to 60 using finite-difference time-domain simulations. We find that the LEE strictly increases with decreasing pixel size, resulting in a LEE improvement of up to 45% for a 1 µm pixel compared to a 20 µm pixel. The ideal pixel sidewall angle varies between 35 and 40, leading to a factor of 1.4 enhancement with respect to vertical pixel sidewalls. For pixel sizes in the order of 2 µm and smaller, a substantial transition of far field properties can be observed. Here, the far field shape depends severely on the pixel sidewall angle and affects the LEE within a solid angle of ±15. Moreover, we investigate the impact of emission wavelength and observe major differences in optical characteristics for blue, green and red emitting pixels, which is relevant for real-world applications. Finally, we discuss the implications of the assumptions we made and their significance for the design of µ-LEDs.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Droop and light extraction of InGaN-based red micro-light-emitting diodes;Semiconductor Science and Technology;2023-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3