Spectral broadening scheme for suppressing SBS effects based on time-domain optimized chirp-like signals

Author:

Li Jie,Shi Mengyue,Wu Yong,Fang Zhiwei,Wang Jiajin,Mu Huan1,Hu WeishengORCID,Yi Lilin

Affiliation:

1. AIOPTICS Technology Co. Ltd.,

Abstract

We propose a novel (to our knowledge) driving scheme to suppress the stimulated Brillouin scattering (SBS) effect in master oscillator power amplification (MOPA) systems based on an external high-order phase modulation. Since seed sources with the linear chirp can uniformly broaden the SBS gain spectrum with a high SBS threshold, a chirp-like signal was designed by applying further editing and processing to the piecewise parabolic signal. Compared with the traditional piecewise parabolic signal, the chirp-like signal has similar linear chirp characteristics and can reduce the driving power and sampling rate requirements, enabling more efficient spectral spreading. The SBS threshold model is constructed theoretically based on the three-wave coupling equation. The spectrum modulated by the chirp-like signal is compared with the flat-top and Gaussian spectra in terms of the SBS threshold and the bandwidth-distribution normalized threshold, and a considerable improvement is demonstrated. Meanwhile, the experimental validation is carried out in a watt-class amplifier based on the MOPA structure. At a 3 dB bandwidth of ∼10 GHz, the SBS threshold of the seed source modulated by the chirp-like signal is improved by 35% compared to the flat-top spectrum and 18% compared to the Gaussian spectrum, respectively, and the normalized threshold is also the highest among them. Our study shows that the SBS suppression effect is not only related to the power distribution of the spectrum but also can be improved by the time domain design, which provides a new idea for analyzing and improving the SBS threshold of narrow-linewidth fiber lasers.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3