Biphase routing scheme for optimal throughput in large-scale optical satellite networks

Author:

Ning YunxiaoORCID,Zhao YongliORCID,Nag Avishek1,Wang HuaORCID,Zhang Jie

Affiliation:

1. University College Dublin

Abstract

In the large-scale optical satellite network (LS-OSN), hundreds to thousands of low Earth orbit (LEO) satellites will be interconnected via laser links, offering global coverage characterized by high throughput and low latency. LS-OSNs present an attractive strategy to cultivate a comprehensively connected, intelligent world. However, the dynamic nature of the satellites, as they orbit the Earth, results in frequent changes in the LS-OSN topology. Thus, there is a pressing need for efficient routing algorithms that not only cater to massive traffic demands but also swiftly adapt to these constant topological changes. Traditional routing algorithms for services with specific bandwidth requirements often compromise on either computational speed or throughput efficiency. In response, this study introduces a routing scheme based on flow optimization and decomposition (FOND). This seeks to shorten the computation time while preserving optimal network throughput. Expanding upon the FOND scheme, we further devised two heuristic algorithms: the flow-based greedy path (FGP) and the flow-based greedy width (FGW). Simulation results from a 288-satellite constellation network indicate that both the FGP and FGW outpace contemporary methods in terms of the routing computation time while maintaining a consistent throughput equal to 100% of the network capacity. Notably, the FGP has exhibited an impressive capability, reducing the routing computation time to 0.23% compared to the baseline incremental-widest-path (IWP) algorithm, which operates on Dijkstra’s algorithm principles.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Reference35 articles.

1. An updated comparison of four low earth orbit satellite constellation systems to provide global broadband;Pachler,2021

2. Delay advantage of optical satellite networks (OSN) in long-distance transoceanic communication;Li,2022

3. Delay is not an option;Handley,2018

4. SpaceRTC: unleashing the low-latency potential of mega-constellations for real-time communications;Lai,2022

5. Optical technologies for very high throughput satellite communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Key Secure Technologies for Optical Satellite Network;2024 22nd International Conference on Optical Communications and Networks (ICOCN);2024-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3