High-fidelity diabetic retina fundus image synthesis from freestyle lesion maps

Author:

Hou Benjamin

Abstract

Retina fundus imaging for diagnosing diabetic retinopathy (DR) is an efficient and patient-friendly modality, where many high-resolution images can be easily obtained for accurate diagnosis. With the advancements of deep learning, data-driven models may facilitate the process of high-throughput diagnosis especially in areas with less availability of certified human experts. Many datasets of DR already exist for training learning-based models. However, most are often unbalanced, do not have a large enough sample count, or both. This paper proposes a two-stage pipeline for generating photo-realistic retinal fundus images based on either artificially generated or free-hand drawn semantic lesion maps. The first stage uses a conditional StyleGAN to generate synthetic lesion maps based on a DR severity grade. The second stage then uses GauGAN to convert the synthetic lesion maps into high resolution fundus images. We evaluate the photo-realism of generated images using the Fréchet inception distance (FID), and show the efficacy of our pipeline through downstream tasks, such as; dataset augmentation for automatic DR grading and lesion segmentation.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Reference29 articles.

1. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045

2. IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030

3. High-resolution image synthesis and semantic manipulation with conditional GANs;Wang,2018

4. Progressive growing of GANs for improved quality, stability, and variation;Karras,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3