Vibration rejection of phased array telescope systems via disturbance-propagation-characteristics-based feedforward control

Author:

Tu Qiong1,Ma Rong-Qi12ORCID,Wang Qiang1,Huang Yong-Mei1,Shi Jian-Liang1,Yuan Liang-Zhu1ORCID,Li Jin-Ying1,Yang Kai-Yuan1,Li Yang1,Tang Wei1

Affiliation:

1. Chinese Academy of Sciences

2. University of Electronic Science and Technology of China

Abstract

Vibration rejection is one of the key techniques to stabilize the line of sight (LOS) for phased array telescope systems. Conventionally, feedback control based on image sensors is mainly used to correct the tip/tilt errors caused by disturbances and to keep the LOS stable. However, it is restricted by the sampling rate and time delay of image sensors, leading to a limited closed-loop bandwidth. Disturbances in the middle and high frequencies are hard to suppress. In this paper, disturbance-propagation-characteristics-based feedforward control is proposed to overcome these problems. A theoretical imaging model of the phased array telescope is developed to analyze the LOS disruption caused by disturbance. In addition, to improve the disturbance suppression bandwidth and correction accuracy of the system, the disturbance propagation characteristics of the phased array telescope system are analyzed. Combined with the disturbance feedforward, targeted compensation is achieved for the sub-apertures. Finally, a comparative experiment is carried out based on the self-developed Fizeau phased array telescope system to verify the superiority of the proposed method.

Funder

Youth Innovation Promotion Association of the Chinese Academy of Sciences

West Light Foundation of the Chinese Academy of Sciences

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3