Adaptive digital back propagation exploiting adjoint-based optimization for fiber-optic communications

Author:

Maghrabi Mahmoud M. T.12ORCID,Bakr Mohamed H.1ORCID,Kumar Shiva1ORCID

Affiliation:

1. McMaster University

2. Cairo University

Abstract

This work proposes a novel and powerful adaptive digital back propagation (A-DBP) method with a fast adaption process. Given that the total transmission distance is known, the proposed A-DBP algorithm blindly compensates for the linear and nonlinear distortions of optical fiber transmission systems and networks, without knowing the launch power and channel parameters. An adjoint-based optimization (ABO) technique is proposed to significantly accelerate the parameters estimation of the A-DBP. The ABO algorithm utilizes a sequential quadratic programming (SQP) method coupled with an adjoint sensitivity analysis (ASA) approach to rapidly solve the A-DBP training problem. The design parameters are optimized using the minimum overhead of only one extra system simulation. Regardless of the number of A-DBP design parameters, the derivatives of the training objective function with respect to all parameters are estimated using only one extra adjoint system simulation per optimization iterate. This is contrasted with the traditional finite-difference (FD)-based optimization methods whose sensitivity analysis calculations cost per iterate scales linearly with the number of parameters. The robustness, performance, and efficiency of the proposed A-DBP algorithm are demonstrated through applying it to mitigate the distortions of 4-span and 20-span optical fiber communication systems. Coarse-mesh A-DBPs with less number of virtual spans are also used to significantly reduce the computational complexity of the equalizer, achieving compensation performance higher than that obtained using the coarse-mesh DBP with the exact channel parameters and full number of virtual spans.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3