Abstract
The effects of different p-GaN layer thickness on the photoelectric and thermal properties of AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs) were investigated. The results revealed that appropriate thinning of the p-GaN layer enhances the photoelectric performance and thermal stability of DUV-LEDs, reducing current crowding effects that affect the external quantum efficiency and chip heat dissipation. The ABC + f(n) model was used to analyse the EQE, which helped in identifying the different physical mechanisms for DUV-LEDs with different p-GaN layer thickness. Moreover, the finite difference time domain simulation results revealed that the light-extraction efficiency of the DUV-LEDs exhibits a trend similar to that of damped vibration as the thickness of the p-GaN layer increases. The AlGaN-based DUV-LED with a p-GaN layer thickness of 20 nm exhibited the best photoelectric characteristics and thermal stability.
Funder
Compound semiconductor technology Collaborative Innovation Platform project of FuXiaQuan National Independent Innovation Demonstration Zone
Fujian Province Central Guidance Local Science and Technology Development Fund Project In 2022
Science and Technology Plan Project in Fujian Province of China
Natural Science Foundation of Fujian Province
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics