Optical, electrical, and EPR studies of polycrystalline Al:Cr:ZnSe gain elements

Author:

Watkins R.,Fedorov V. V.ORCID,Zvanut M. E.,Bhandari S.,Barnakov Y.1,Mirov S. B.ORCID

Affiliation:

1. IPG Photonics Southeast Technology Center

Abstract

Transition metal-doped II-VI (TM:II-VI) chalcogenides are well-known laser materials for optically pumped middle-infrared lasers. Cr:ZnSe is a key representative of this class of transition metal doped II-VI gain media and is arguably considered the material of choice for optically pumped middle-infrared lasers. In addition to effective mid-IR lasing under optical excitation, these crystals, being wide-band semiconductors, hold the potential for direct electrical excitation. One way to form n-type conductivity in ZnSe crystals is by annealing them in a melt of Zn-Al alloy. However, this annealing of Cr:ZnSe crystals results in their purification and transfer of chromium to the melt of Zn-Al alloy. In this article, we report on optimizing the doping technique for providing n-type conductivity in Al:Cr:ZnSe crystals while preserving the chromium concentration. Al:Cr:ZnSe samples with resistivities ranging from 10.8 to 992 Ω-cm were fabricated. While the 2 + valence state of Cr is typically dominant in Cr:ZnSe, both Cr2+ and Cr+ were detected in Al:Cr:ZnSe samples. The maximum level of Cr+ concentration was measured to be 4 × 1018 cm-3.

Funder

U.S. Department of Energy

National Institute of Environmental Health Sciences

Publisher

Optica Publishing Group

Subject

Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3