Precise determination of energy transfer upconversion coefficient for the erbium and ytterbium codoped laser crystals

Author:

Li Yuanji,Liu Kunlun,Feng Jinxia,Chen Yujin1,Huang Yidong1,Zhang Kuanshou

Affiliation:

1. Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences

Abstract

Energy transfer upconversion (ETU) coefficient plays a crucial role in investigating complex laser systems as it greatly influences both the laser output behavior and heat generation. For some quasi-three-energy-level lasers based on Er3+ doped, Ho3+ doped and codoped gain media, the available theoretical studies relied on some unreasonable approximations due to the lack of spectroscopic data, notably the ETU coefficient. We put forward what we believe is a novel approach to overcome the difficulties caused by wavelength jump occurred in aforementioned laser systems. Based on net gain cross-section analysis and rate equations modelling, the functional relationship between the ETU coefficient, the laser power and pump power at the jumping wavelength are established. ETU coefficients and their temperature dependences of Er,Yb:YAB crystals with different crystal doped concentrations are experimentally determined for the first time. The results reveal that the ETU process in Er,Yb:YAB laser system is 5∼35 times stronger than that in Er3+ and Yb3+ codoped phosphate glass. The determination of these spectroscopic data paves the way for precise modelling of laser system based on Er,Yb:YAB or similar gain media.

Funder

National Natural Science Foundation of China

Special Foundation of Local Scientific and Technological Development Guided by Central Government

Fundamental Research Program of Shanxi Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3