Affiliation:
1. Hefei University of Technology
Abstract
Although many studies on cholesteric liquid crystal (CLC) microdroplet single-mode lasers are available, it has been shown that the stability and tunability of such microdroplets are difficult to achieve simultaneously. In this paper, a new, to the best of our knowledge, method is proposed for the mass and rapid preparation of stable and tunable monodisperse CLC microdroplet single-mode lasers. This is based on the formation of polymer networks on the surface of the microdroplet via interfacial polymerization and a disruption of the orderliness of the polymer networks by increasing the temperature during polymerization, which results in a single pitch inside the microdroplets. This approach enables CLC microdroplet single-mode lasers to achieve improved environmental robustness, while maintaining the same temperature tunability as the unpolymerized sample. Our method has promising future applications in integrated optics, flexible devices, and sensors.
Funder
National Key Research and Development Program of China
Fundamental Research Funds for the Central Universities
Distinguished Youth Foundation of Anhui Province
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering