Iterative space-variant sphere-model deflectometry enabling designation-model-free measurement of the freeform surface

Author:

Niu Zhenqi123ORCID,Wu Zhen123,Wan Songlin123ORCID,Zhang Xiangchao4ORCID,Wei Chaoyang123,Shao Jianda23

Affiliation:

1. Chinese Academy of Sciences

2. Shanghai Institute of Optics and Fine Mechanics

3. University of Chinese Academy of Sciences

4. Fudan University

Abstract

Freeform optics, offering high degrees of design freeform to control light propagation, have already been widely applied in various photoelectric equipment. The form quality of those optics is crucial to their opto-electronics functionalities, which requires to be measured accurately. The deflectometry is a promising technology to test the complex freeform surfaces. In general, there is a designed surface model for the monoscopic deflectometry to estimate the positions of whole measured points to solve the issue of height-slope ambiguity. However, the unknown or inaccurate surface model can induce errors into the measured normal, thereby decreasing the measurement precision. In this paper, without relying on the known surface model, the proposed method iteratively optimizes a sphere model to describe the measured surface by changing the spherical radius. In order to reduce the global error, the space-variant spheres are optimized, respectively, to estimate the whole-aperture surface coordinate. With the help of the iteration surface reconstruction process, the optimal number of the space-variant spheres is achieved to meantime obtain the final reconstructed surface. Compared to the measurements by using the plane model, the form accuracy can be improved by three times. Experiments demonstrate that the proposed method can successfully reconstruct the complex surfaces without the need of a known surface model, which can greatly improve the measuring flexibility and measurement accuracy.

Funder

Shanghai Sailing Program

Natural Science Foundation of Shanghai

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3