Affiliation:
1. University of Rome ’Sapienza’
2. INFN-LNF Laboratori Nazionali Frascati
3. University Rome Tre
4. INGV
5. Rome International Centre for Materials Science Superstipes
6. INFN – Section of Rome ’Sapienza’
Abstract
Motivated by the increasing demand to monitor the air-quality, our study proved the feasibility of a new compact and portable experimental approach based on Terahertz (THz) continuous wave high resolution spectroscopy, to detect the presence of the air’s contaminants as greenhouse gases (GHG) and volatile organic compounds (VOCs). In this specific work, we first characterized, determining their molar absorption coefficient in the spectral region (0.06-1.2) THz, the pure optical response of the vapor of five VOCs: methanol, ethanol, isopropanol, 1-butanol and 2-butanol. In particular, 1-butanol and 2-butanol are characterized for the first time in literature at THz frequencies. Then we studied the optical response of their mixtures achieved with ambient air and ethanol. The results show that it is possible for a differentiation of single components by describing their spectral absorption in terms of the linear combination of pure compounds absorption. This proof of concept for this apparatus study and set-up paves the way to the use of THz Continuous wave high resolution spectroscopy for the environmental tracking of air pollutants.
Subject
Atomic and Molecular Physics, and Optics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献