High-speed and high-resolution YAG fiber based distributed high temperature sensing system empowered by a 2D image restoration algorithm

Author:

Liu Xu1ORCID,Jie Ruimin1,Bera Subhabrata2,Yan Taiyu1,Peng Wei1,Zhou Ciming3,Rao Yunjiang14,Liu Bo15ORCID

Affiliation:

1. Research Center for Optical Fiber Sensing

2. II-VI Inc.

3. Wuhan University of Technology

4. University of Electronic Science and Technology

5. Zhejiang University

Abstract

High temperature monitoring is critical to the health and performance of vital pieces of infrastructure such as jet engine, fuel cells, coal gasifiers, and nuclear reactor core. However, it remains a big challenge to realize reliable distributed high temperature sensing system with high speed, high spatial and temperature resolution simultaneously. In this work, a Raman distributed high temperature sensing system with high temperature resolution and high spatial resolution was realized in a single-crystal YAG fiber. The sensing system demonstrated operation from room temperature up to 1400°C with a spatial resolution of 7 cm and response time of 1 millisecond in a 1m long YAG fiber. The average temperature sensitivity of the system is about 7.95 × 10−4/°C. To the best of our knowledge, this is the best spatial resolution and response time reported in literature. In this system, a 2D image restoration was used to boost the signal to noise ratio of sensor. Empowered by the algorithm, the average temperature standard deviation along the sensing fiber of 7.89 °C was obtained based on a single frame data in 1 millisecond. A new record of temperature resolution of 0.62 °C was demonstrated in only 1 second frame data traces, which enables a fast response capacity.

Funder

Zhejiang Lab

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3