Low-loss and compact photonic lantern based on a step-index double cladding fiber

Author:

Zhang CongORCID,Wang Yue,Zhang Senyu1,Xiang MengORCID,Fu Songnian,Qin YuwenORCID

Affiliation:

1. Huazhong University of Science and Technology

Abstract

The fulfilment of the adiabatic criterion is indispensable for the realization of a low-loss photonic lantern (PL), concurrently imposing a stringent restriction on the taper transition length of the PL. Here, by relaxing the adiabatic criterion, a low-loss and compact PL based on a step-index double cladding fiber (SI-DCF) is theoretically proposed and experimentally demonstrated. The use of SI-DCF can reduce the mode field diameter (MFD) expansion ratio during the tapering processing and greatly decrease the taper transition length required for adiabatic tapering. We initially evaluate the variation of both MFD and effective refractive index (RI) along the fiber tapering based on three types of fiber structures, including the modified standard single-mode fiber (SSMF), the graded-index fiber (GIF), and the proposed SI-DCF. In comparison with the commonly used fiber geometry, the SI-DCF can reduce the MFD expansion ratio from 77.73% to 38.81%, leading to more than half reduction of the tapering length for both 3-mode and 6-mode PLs. Then, two kinds of SI-DCF with different core diameters are fabricated to realize a 3-mode PL. The fabricated PL possesses a 1.5 cm tapering length and less than 0.2 dB insertion loss (IL). After splicing with the commercial few-mode fiber, the PL has an average IL of 0.6 dB and more than 13 dB LP11 mode purity over the C-band. Finally, a transfer matrix measurement indicates that the fabricated PLs have a mode coupling of less than −10 dB at 1550 nm.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Guangdong Introducing Innovative and Entrepreneurial Teams of The Pearl River Talent Recruitment Program

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3