Two-field sequential color liquid crystal displays with deep learning-enabled real-time driving

Author:

Wang Zeyu,Zou Guowei,Li Yutong1,Ma Changwen1,Zhang Zhou1,Zha Guowei1,Shen Yan,Yang Bo-Ru,Qin ZongORCID

Affiliation:

1. TCL China Star Optoelectronics Technology Co. Ltd.

Abstract

Two-field driving is the ultimate goal of field sequential color liquid crystal displays (FSC-LCDs) because it requires the lowest refresh rate and transmission bandwidth in addition to the intrinsic advantages of FSC-LCDs, e.g., tripled light efficiency and spatial resolution. However, fewer fields create a more significant challenge in controlling color breakup and distortion, as well as higher computational complexity in calculating LC signals. Regarding the difficulties, we propose a two-field FSC driving method that synchronously generates backlight and LC signals through two lightweight neural networks. The runtimes of the two networks are as fast as 1.23 and 1.79 ms per frame on a GeForce RTX 3090Ti graphic card, fully supporting real-time driving. Next, an over-partitioning approach is proposed to overcome the cross talk between backlight segments while processing high-resolution images. Besides the real-time feature, a reduction of 14.88% in color breakup concerning current methods and low distortion are verified. We also provide our open-source code.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

General Project of Basic and Applied Foundation of Guangzhou City

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3