Enhanced light extraction efficiency of GaN-based green micro-LED modulating by a thickness-tunable SiO2 passivation structure

Author:

Yan Xing,Hu Xun1,Zhou Rui2ORCID,Gao Na13,Yao Yuchao,Gao Yujie1,Kang Junyong1

Affiliation:

1. Xiamen University

2. Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)

3. Jiujiang Research Institute of Xiamen University

Abstract

Green micro-light emitting diodes (micro-LEDs) is one of the three primary color light sources as full-color display, which serves as a key research object in the field of micro-LED display. As the micro-LED size decreases, the surface-area-to-volume ratio of the device increases, leading to more serious damage on the sidewall by inductively coupled plasma (ICP) etching. The passivation process of SiO2 provides an effective method to reduce sidewall damage caused by ICP etching. In this work, green rectangular micro-LEDs with passivation layer thickness of 0∼600 nm was designed using the finite-difference time-domain (FDTD) simulation. In order to verify the simulation results, the micro-LED array was fabricated by parallel laser micro-lens array (MLA) lithography in high speed and large area. The effect of the SiO2 passivation layer thickness on the performance of the green micro-LED was analyzed, which shows that the passivation layer thickness-light extraction efficiency curve fluctuates periodically. For the sample with 90 nm thickness of SiO2 passivation layer, there exists a small leakage current and higher operating current density, and the maximum external quantum efficiency (EQE) is 2.8 times higher than micro-LED without SiO2 passivation layer.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fujian Provincial Department of Science and Technology

Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province Applied Research Project

Natural Science Foundation of Jiangxi Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3