Double filter iterative ghost imaging for high quality edge and image acquisition

Author:

Zhou Cheng12,Feng Deli1,Wang Gangcheng1,Huang Jipeng1,Huang Heyan3,Liu Xuan4,Li Xinwei2,Feng Yueshu2ORCID,Sun Haizhu1,Song Lijun25

Affiliation:

1. Northeast Normal University

2. Jilin Engineering Laboratory for Quantum Information Technology

3. Shanghai Institute of Technology

4. Changchun University of Science and Technology

5. Jilin Vocational College of Industry and Technology

Abstract

Improving imaging quality and reducing time consumption are the key problems that need to be solved in the practical application of ghost imaging. Hence, we demonstrate a double filter iterative ghost imaging method, which adopts the joint iteration of projected Landweber iterative regularization and double filtering based on block matching three dimensional filtering and guided filtering to achieve high-quality image reconstruction under low measurement and low iteration times. This method combines the advantages of ill-posed problem solution of projected Landweber iterative regularization with double filtering joint iterative de-noising and edge preservation. The numerical simulation results show that our method outperforms the comparison method by 4 to 6 dB in terms of peak signal-to-noise ratio for complex binary target ‘rice’ and grayscale target ‘aircraft’ after 1500 measurements. The comparison results of experiments and numerical simulations using similar aircraft targets show that this method is superior to the comparison method, especially in terms of richer and more accurate edge detection results. This method can simultaneously obtain high quality reconstructed image and edge feature information under low measurement and iteration times, which is of great value for the practical application fields of imaging and edge detection at the same time, such as intelligent driving, remote sensing and other fields.

Funder

the Key Program for Science and Technology Development of Jilin Province

the Science and Technology Planning Project of Jilin Province

the Science Foundation of the Education Department of Jilin Province

Science and Technology Talent Devel- opment Fund for Young and Middle-aged Teachers, Shanghai Institute of Technology , Shanghai

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3