Affiliation:
1. Institut für Satellitengeodäsie und Inertialsensorik, c/o Leibniz Universität Hannover
2. Institut für Quantenoptik, Leibniz Universität Hannover
Abstract
Providing phase stable laser light is important to extend the interrogation time of optical clocks towards many seconds and thus achieve small statistical uncertainties. We report a laser system providing more than 50 µW phase-stabilized UV light at 267.4 nm for an aluminium ion optical clock. The light is generated by frequency-quadrupling a fibre laser at 1069.6 nm in two cascaded non-linear crystals, both in single-pass configuration. In the first stage, a 10 mm long PPLN waveguide crystal converts 1 W fundamental light to more than 0.2 W at 534.8 nm. In the following 50 mm long DKDP crystal, more than 50 µW of light at 267.4 nm are generated. An upper limit for the passive short-term phase stability has been measured by a beat-node measurement with an existing phase-stabilized quadrupling system employing the same source laser. The resulting fractional frequency instability of less than 5×10−17 after 1 s supports lifetime-limited probing of the 27Al+ clock transition, given a sufficiently stable laser source. A further improved stability of the fourth harmonic light is expected through interferometric path length stabilisation of the pump light by back-reflecting it through the entire setup and correcting for frequency deviations. The in-loop error signal indicates an electronically limited instability of 1 × 10−18 at 1 s.
Funder
Deutsche Forschungsgemeinschaft
Germany's Excellence Strategy
European Metrology Programme for Innovation and Research
European Union’s Horizon 2020 Research and Innovation Programme
Lower Saxony, Hannover, Germany, through Niedersächsisches Vorab.
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献