Prediction of the superimposed laser shot number for copper using a deep convolutional neural network

Author:

Rani K.1,Ozaki N.1,Hironaka Y.1,Hashimoto K.,Kodama R.1,Mukai K.,Nakamura H.,Takai S.,Nagatomo H.1

Affiliation:

1. Osaka University

Abstract

Image-based deep learning (IBDL) is an advanced technique for predicting the surface irradiation conditions of laser surface processing technology. In pulsed-laser surface processing techniques, the number of superimposed laser shots is one of the fundamental and essential parameters that should be optimized for each material. Our primary research aims to build an adequate dataset using laser-irradiated surface images and to successfully predict the number of superimposed shots using the pre-trained deep convolutional neural network (CNN) models. First, the laser shot experiments were performed on copper targets using a nanosecond YAG laser with a wavelength of 532 nm. Then, the training data were obtained with the different superimposed shots of 1 to 1024 in powers of 2. After that, we used several pre-trained deep CNN models to predict the number of superimposed laser shots. Based on the dataset with 1936 images, VGG16 shows a high validation accuracy, higher sensitivity, and more than 99% precision than other deep CNN models. Utilizing the VGG16 model with high sensitivity could positively impact the industries’ time, efficiency, and overall production.

Funder

Japan Science and Technology Agency

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3