Optimizing self-interference digital holography for single-molecule localization

Author:

Li Shaoheng,Kner Peter A.ORCID

Abstract

Self-interference digital holography (SIDH) can image incoherently emitting objects over large axial ranges from three two-dimensional images. By combining SIDH with single-molecule localization microscopy (SMLM), incoherently emitting objects can be localized with nanometer precision over a wide axial range without mechanical refocusing. However, background light substantially degrades the performance of SIDH due to the relatively large size of the hologram. To optimize the performance of SIDH, we performed simulations to study the optimal hologram radius (R h ) for different levels of background photons. The results show that by reducing the size of the hologram, we can achieve a localization precision of better than 60 nm laterally and 80 nm axially over a 10 µm axial range under the conditions of low signal level (6000 photons) with 10 photons/pixel of background noise. We then performed experiments to demonstrate our optimized SIDH system. The results show that point sources emitting as few as 2120 photons can be successfully detected. We further demonstrated that we can successfully reconstruct point-like sources emitting 4200 photons over a 10 µm axial range by light-sheet SIDH.

Funder

National Institute of General Medical Sciences

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3