Faulty branch identification in passive optical networks using machine learning

Author:

Abdelli Khouloud1,Tropschug Carsten2,Griesser Helmut,Pachnicke Stephan1ORCID

Affiliation:

1. Christian-Albrechts-Universität zu Kiel

2. ADVA Optical Networking SE

Abstract

Passive optical networks (PONs) have become a promising broadband access network solution thanks to their wide bandwidth, low-cost deployment and maintenance, and scalability. To ensure a reliable transmission, and to meet service level agreements, PON systems have to be monitored constantly in order to quickly identify and localize network faults and thus reduce maintenance costs, minimize downtime, and enhance quality of service. Typically, a service disruption in a PON system is mainly due to fiber cuts and optical network unit (ONU) transmitter/receiver failures. When the ONUs are located at different distances from the optical line terminal, the faulty ONU or branch can be identified by analyzing the recorded optical time domain reflectometry (OTDR) traces. OTDR is a technique commonly used for monitoring of fiber optic links. However, faulty branch isolation becomes very challenging when the reflections originate from two or more branches with similar length overlap, which makes it very hard to discriminate the faulty branches given the global backscattered signal. Recently, machine learning (ML)-based approaches have shown great potential for managing optical faults in PON systems. Such techniques perform well when trained and tested with data derived from the same PON system. But their performance may severely degrade if the PON system (adopted for the generation of the training data) has changed, e.g., by adding more branches or varying the length difference between two neighboring branches, etc. A re-training of the ML models has to be conducted for each network change, which can be time consuming. In this paper, to overcome the aforementioned issues, we propose a generic ML approach trained independently of the network architecture for identifying the faulty branch in PON systems given OTDR signals for the cases of branches with close lengths. Such an approach can be applied to an arbitrary PON system without requiring to be re-trained for each change of the network. The proposed approach is validated using experimental data derived from the PON system.

Funder

CELTIC-NEXT project AI-NET-PROTECT

Bundesministerium für Bildung und Forschung

Publisher

Optica Publishing Group

Subject

Computer Networks and Communications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3