Affiliation:
1. The University of Tokyo
2. RIKEN Center for Quantum Computing
3. NTT Device Technology Labs.
4. National Institute of Advanced Industrial Science and Technology
5. AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory
6. Palacky University
Abstract
In the field of continuous-variable quantum information processing, non-Gaussian states with negative values of the Wigner function are crucial for the development of a fault-tolerant universal quantum computer. While several non-Gaussian states have been generated experimentally, none have been created using ultrashort optical wave packets, which are necessary for high-speed quantum computation, in the telecommunication wavelength band where mature optical communication technology is available. In this paper, we present the generation of non-Gaussian states on wave packets with a short 8-ps duration in the 1545.32 nm telecommunication wavelength band using photon subtraction up to three photons. We used a low-loss, quasi-single spatial mode waveguide optical parametric amplifier, a superconducting transition edge sensor, and a phase-locked pulsed homodyne measurement system to observe negative values of the Wigner function without loss correction up to three-photon subtraction. These results can be extended to the generation of more complicated non-Gaussian states and are a key technology in the pursuit of high-speed optical quantum computation.
Funder
Japan Science and Technology Agency
Japan Society for the Promotion of Science
Ministerstvo Školství, Mládeže a Tělovýchovy
Grantová Agentura České Republiky
Horizon 2020 Framework Programme
Subject
Atomic and Molecular Physics, and Optics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献