Polarization evolution in Brillouin scattering with a partially polarized pump

Author:

Zhou JunheORCID,Liu Tengyuan,Wang Yunheng

Abstract

Polarization sensitivity has been a major issue in Brillouin scattering-based optical fiber sensing systems. Randomization of the polarization state of the pump is one of the ways to circumvent the problem. However, there could exist a residual degree of polarization (DOP) for the pump after polarization randomization, and hence, a model to characterize the polarization evolution in Brillouin scattering with a partially polarized pump is essential for the performance evaluation. In this work, a comprehensive theoretical model to characterize the beam variation with the partially polarized pump wave and Stokes wave is proposed, which is based on a set of stochastic differential equations (SDEs). The polarized part of the pump wave and the Stokes wave, as well as the total powers of the waves, are incorporated in the coupled SDE simultaneously, which enables the comprehensive simulation of the polarization evolution in the fiber. It is revealed in the study that the DOPs of the pump wave and the Stokes wave affect the gain stability and should be reduced simultaneously by polarization scrambling to ensure a fixed Brillouin gain without fluctuations.

Funder

National Science and Technology Major Project

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3