Numerical iteration method to reduce the surface shape error of a bendable mirror in synchrotron radiation

Author:

Chen Minwei1,Gao Lidan1,Sheng Weifan12,Wang Shaofeng1,Yang Fugui1

Affiliation:

1. Institute of High Energy Physics, Chinese Academy of Science

2. University of Chinese Academy of Sciences

Abstract

X-ray mirrors with high focusing performance are extensively used in the synchrotron radiation field. Especially for vertical reflecting bendable mirrors, many elements such as gravity, extended parts used for the bending mechanism, etc., usually affect the surface shape precision. There are no effective methods to remove all these errors at this point. However, an iteration method can be adopted to solve this problem. In this paper, a novel, to the best of our knowledge, iteration method on decreasing the error between the practice surface shape and the desired one is proposed. Not only can the precision of the surface shape be realized by this method, but also computational efficiency. Errors induced by gravity can be compensated for by an analytical method, while errors caused by the extended parts should be eliminated by a numerical method. Therefore, two main kinds of errors—gravity and parts of clamping—can be removed by iteration. Some examples are presented to illustrate the advantages of this method by comparison with the regular one.

Funder

Youth Innovation Promotion Association of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3