Affiliation:
1. Foshan University
2. Hubei University of Science and Technology
3. University of Houston
4. Weiren Meditech Co., Ltd.
Abstract
We present a novel optical coherence elastography (OCE) method to characterize mechanical hysteresis of soft tissues based on transient (milliseconds), low-pressure (<20 Pa) non-contact microliter air-pulse stimulation and micrometer-scale sample displacements. The energy dissipation rate (sample hysteresis) was quantified for soft-tissue phantoms (0.8% to 2.0% agar) and beef shank samples under different loading forces and displacement amplitudes. Sample hysteresis was defined as the loss ratio (hysteresis loop area divided by the total loading energy). The loss ratio was primarily driven by the sample unloading response which decreased as loading energy increased. Samples were distinguishable based on their loss ratio responses as a function loading energy or displacement amplitude. Finite element analysis and mechanical testing methods were used to validate these observations. We further performed the OCE measurements on a beef shank tissue sample to distinguish the muscle and connective tissue components based on the displacement and hysteresis features. This novel, noninvasive OCE approach has the potential to differentiate soft tissues by quantifying their viscoelasticity using micron-scale transient tissue displacement dynamics. Focal tissue hysteresis measurements could provide additional clinically useful metrics for guiding disease diagnosis and tissue treatment responses.
Funder
National Natural Science Foundation of China
Basic and Applied Basic Research Foundation of Guangdong Province
Department of Education of Guangdong Province
Guangdong Provincial Pearl River Talents Program
Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory
Hubei University of Science and Technology
National Eye Institute
Subject
Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献