Bragg gratings with novel waveguide models fabricated in bulk glass via fs-laser writing and their slow-light effects

Author:

Chen Qingtao1ORCID,Boisvert Jean-Sébastien12,Sharawi Mohammad S.13,Kashyap Raman12

Affiliation:

1. Poly-Grames Research Center

2. Department of Engineering Physics

3. Blue Origin, LLC.

Abstract

We present the experimental realization of an innovative parallel partially overlapping waveguides (PO-WGs) model grounded in the thermal accumulated regime and fabricated using femtosecond (fs) laser direct-writing within low-iron bulk glass. The 75mm long novel PO-WGs model was made by partially overlapping the shell parts of two core-shell types of waveguides via a back-and-forth single pass fs-laser inscription. The detailed evolution of the PO-WGs model from inception to completion was offered, accompanying by a thorough characterization, which unveils a substantial refractive index (RI) change, on the order of 10−3, alongside low propagation loss (0.2 dB/cm) and distinctive features associated with the single mode and shell-guided light. Notably, the unsaturated performance of PO-WGs model after the primary inscription paves the way for potential applications in the successful creation of two distinctive types of Bragg gratings: first-order dot-Bragg grating and second-order line-Bragg grating. The 75 mm long dot-Bragg grating was written by a periodic dot array with a height of 6 µm atop the PO-WGs, and the birefringence was measured of 1.5 × 10−5 with a 16 pm birefringence-induced wavelength difference. The line-Bragg grating, which was inscribed with dual PO-WGs extending the line grating part to 40 mm in length along its period for increasing the transmission dip, exhibits a pronounced polarization dependence showcasing an effective birefringence of 4.2 × 10−4 at the birefringence-induced wavelength difference of 0.45 nm. We delved into the slow-light effects of the two Bragg gratings thoroughly, which the theoretical analysis revealed an effective group delay of 0.58 ns (group index 2.3) for the dot-Bragg grating. Similarly, the line-Bragg grating exhibited an effective group delay of 0.3 ns (group index 2.3), in good agreement with experimental measurements. These findings underscore the exciting potential of our gratings for creating optical slow-wave structures, particularly for future on-chip applications.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3