Underwater plenoptic cameras optimized for water refraction

Author:

Jiang Guotai,Jin XinORCID,Deng Rujia,Sun Kelin1ORCID,Yang Jingchuan1,Lv Weijin

Affiliation:

1. Chinese Academy of Sciences

Abstract

By inserting a microlens array (MLA) between the main lens and imaging sensor, plenoptic cameras can capture 3D information of objects via single-shot imaging. However, for an underwater plenoptic camera, a waterproof spherical shell is needed to isolate the inner camera from the water, thus the performance of the overall imaging system will change due to the refractive effects of the waterproof and water medium. Accordingly, imaging properties like image clarity and field of view (FOV) will change. To address this issue, this paper proposes an optimized underwater plenoptic camera that compensates for the changes in image clarity and FOV. Based on the geometry simplification and the ray propagation analysis, the equivalent imaging process of each portion of an underwater plenoptic camera is modeled. To mitigate the impact of the FOV of the spherical shell and the water medium on image clarity, as well as to ensure successful assembly, an optimization model for physical parameters is derived after calibrating the minimum distance between the spherical shell and the main lens. The simulation results before and after underwater optimization are compared, which confirm the correctness of the proposed method. Additionally, a practical underwater focused plenoptic camera is designed, further demonstrating the effectiveness of the proposed model in real underwater scenarios.

Funder

Shenzhen Project, China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multifocus camera optics with 5˟ extending the depth of field;Optics, Photonics, and Digital Technologies for Imaging Applications VIII;2024-06-18

2. Calculation and Analysis of Key Parameters of Underwater Optical Imaging System;Sensors;2024-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3