Abstract
We present a deep background-mismodeling-learned reconstruction framework for high-accuracy fluorescence diffuse optical tomography (FDOT). A learnable regularizer incorporating background mismodeling is formulated in the form of certain mathematical constraints. The regularizer is then learned to obtain the background mismodeling automatically using a physics-informed deep network implicitly. Here, a deep-unrolled FIST-Net for optimizing L1-FDOT is specially designed to obtain fewer learning parameters. Experiments show that the accuracy of FDOT is significantly improved via implicitly learning the background mismodeling, which proves the validity of the deep background-mismodeling-learned reconstruction. The proposed framework can also be used as a general method to improve a class of image modalities based on linear inverse problems with unknown background modeling errors.
Funder
STI2030-Major Projects
National Natural Science Foundation
Independent Innovation Fund of WNLO
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献