Space-time modulated loaded-wire metagratings for magnetless nonreciprocity and near-complete frequency conversion

Author:

Hadad Yakir1ORCID,Sounas Dimitrios2ORCID

Affiliation:

1. Tel-Aviv University

2. Wayne State University

Abstract

In recent years, significant progress has been made in the development of magnet-less nonreciprocity using space-time modulation, both in electromagnetics and acoustics. This approach has so far resulted in a plethora of non-reciprocal devices, such as isolators and circulators, over different parts of the spectrum, for guided waves. On the other hand, very little work has been performed on non-reciprocal devices for waves propagating in free space, which can also have many practical applications. For example, it was shown theoretically that non-reciprocal scattering by a metasurface can be obtained if the surface-impedance operator is continuously modulated in space and time. However, the main challenge in the realization of such a metasurface is due to the high complexity required to modulate in space and time many sub-wavelength unit-cells of which the metasurface consists. In this paper, we show that spatiotemporally modulated metagratings can lead to strong nonreciprocal responses, even though they are based on electrically-large unit cells and use only three modulation domains. We specifically focus on wire metagratings loaded with time-modulated capacitances. We use the discrete-dipole approximation and an ad-hoc generalization of the theory of polarizability for time-modulated particles and demonstrate an effective non-reciprocal anomalous reflection (diffraction) with an efficient frequency conversion. Thus, our work opens a venue for a practical design and implementation of highly non-reciprocal magnet-less metasurfaces in electromagnetics and acoustics.

Funder

Israel Science Foundation

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3