Fluorescence inhibition near spherical ENZ nanoparticles: competition between radiative and non-radiative processes

Author:

Atwi H.12,Nicolas R.3,Herro Z.2,Vincent R.1ORCID

Affiliation:

1. University of Technology of Troyes and CNRS EMR

2. Lebanese University

3. Lebanese American University

Abstract

In this work, we aim to study numerically the emission decay rate of a hybrid system combining a quantum emitter (QE) and an epsilon-near-zero (ENZ) spherical nanoparticle (SNP). Inspired by the peculiar behavior of ENZ materials and their high potential in developing unusual abilities in controlling the emission properties of QE. More specifically the control of fluorescence inhibition, or the amplification of the lifetime of the excited state. This can naturally find applications in quantum information storage for optical quantum memories based on light–atom interaction which naturally benefit from storage time control. We demonstrate that the key process in limiting fluorescence inhibition is the competition between inhibition of fluorescence from the radiative processes and energy dissipation due to the non-radiative channels. Furthermore, we illustrate that this balance can be shifted to optimize inhibition as function of the QE position. The optimization happens via SNP size control, material composition, and λ ENZ of the SNP. This detailed study introduces and paves the way for new research directions on the manipulation and optimization of QE properties in the vicinity of ENZ materials.

Funder

European Regional Development Fund

FACE Foundation

Agence Nationale de la Recherche

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3