Affiliation:
1. , Jingyue Technological Development Zone
Abstract
Wavelength division (de)multiplexing (WDM) device is a crucial component for optical transmission networks. In this paper, we demonstrate a 4 channel WDM device with a 20 nm wavelength spacing on silica based planar lightwave circuits (PLC) platform. The device is designed using an angled multimode interferometer (AMMI) structure. Since there are fewer bending waveguides than other WDMs, the device footprint is smaller, at 21 mm × 0.4 mm. Owing to the low thermo-optic coefficient (TOC) of silica, a low temperature sensitivity of 10 pm/°C is achieved. The fabricated device exhibits high performance of an insertion loss (IL) lower than 1.6 dB, a polarization dependent loss (PDL) lower than 0.34 dB, and the crosstalk between adjacent channels lower than −19 dB. The 3 dB bandwidth is 12.3∼13.5 nm. Moreover, the device shows a high tolerance with a sensitivity of central wavelength to the width of multimode interferometer < 43.75 pm/nm.
Funder
National Key Research and Development Program of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献