Cohesive framework for non-line-of-sight imaging based on Dirac notation

Author:

Redo-Sanchez AlbertORCID,Luesia-Lahoz PabloORCID,Gutierrez Diego,Muñoz Adolfo

Abstract

The non-line-of-sight (NLOS) imaging field encompasses both experimental and computational frameworks that focus on imaging elements that are out of the direct line-of-sight, for example, imaging elements that are around a corner. Current NLOS imaging methods offer a compromise between accuracy and reconstruction time as experimental setups have become more reliable, faster, and more accurate. However, all these imaging methods implement different assumptions and light transport models that are only valid under particular circumstances. This paper lays down the foundation for a cohesive theoretical framework which provides insights about the limitations and virtues of existing approaches in a rigorous mathematical manner. In particular, we adopt Dirac notation and concepts borrowed from quantum mechanics to define a set of simple equations that enable: i) the derivation of other NLOS imaging methods from such single equation (we provide examples of the three most used frameworks in NLOS imaging: back-propagation, phasor fields, and f-k migration); ii) the demonstration that the Rayleigh-Sommerfeld diffraction operator is the propagation operator for wave-based imaging methods; and iii) the demonstration that back-propagation and wave-based imaging formulations are equivalent since, as we show, propagation operators are unitary. We expect that our proposed framework will deepen our understanding of the NLOS field and expand its utility in practical cases by providing a cohesive intuition on how to image complex NLOS scenes independently of the underlying reconstruction method.

Funder

European Defence Fund

Ministerio de Ciencia, Innovación y Universidades

Agencia Estatal de Investigación

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3