Security optimization of synchronization in DFB lasers under constant-amplitude random-phase drive light by reducing drive-response correlation

Author:

Zhang Yuhe,Wang Anbang,Xu Junpei,Wang Longsheng1,Sun YuehuiORCID,Zhang Xinhui2,Mo LaihongORCID,Qin YuwenORCID,Wang Yuncai

Affiliation:

1. Taiyuan University of Technology

2. Guangdong University of Technology

Abstract

Common-signal-induced laser synchronization promoted a promising paradigm of high-speed physical key distribution. Constant-amplitude and random-phase (CARP) light was proposed as the common drive signal to enhance security by reducing the correlation between the drive and the laser response in intensity. However, the correlation in light phase is not examined. Here, we numerically reveal that the correlation coefficient of the CARP light phase and the response laser intensity (denoted as CCR-φD) can reach a value close to 0.6. Effects of parameters including optical frequency detuning, and modulation depth and noise bandwidth and transparency carrier density for CARP light generation are investigated in detail. By optimizing the optical frequency, modulation depth, and noise bandwidth, respectively, CCR-φD can be reduced to 0.32, 0.18, and 0.10. In the meantime, CCR-φD can be further reduced through secondary optimizing of parameters. CCR-φD can be further reduced by increasing transparent carrier density provided response laser synchronization is achieved. This work gives a new insight about the laser synchronization induced by common CARP light, and also contributes a suggestion of security improvement for physical key distribution based on laser synchronization.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Program for Guangdong Introducing Innovative and Enterpreneurial Teams

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3