Affiliation:
1. Shanghai Jiao Tong University
2. University of Chinese Academy of Sciences
3. Chinese Academy of Sciences
Abstract
Semiconductor saturable absorber mirrors (SESAMs) have been regarded as a revolutionary technology for ultrafast mode-locked lasers, producing numerous landmark laser breakthroughs. However, the operating wavelength of existing SESAMs is limited to less than 3 µm. In this study, we create a 3–5 µm mid-infrared (MIR) SESAM by engineering an InAs/GaSb type-II superlattice. Bandgap engineering and the strong coupling between potential wells in a superlattice enable a broadband response of saturable absorption in the 3–5 µm spectral range. Using the fabricated SESAM, we realize a SESAM mode-locked Er:ZBLAN fiber laser at 3.5 µm, which delivers MIR ultrashort pulses with high long-term stability. The breakthrough of SESAM fabrication in the MIR will promote the development of MIR ultrafast coherent sources and related application fields.
Funder
National Natural Science Foundation of China
Shanghai Municipal Education Commission
Subject
Atomic and Molecular Physics, and Optics
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献