Affiliation:
1. Hunan University of Science and Technology
2. Central South University
Abstract
We propose a new, to the best of our knowledge, and very general finite power beam solution to the paraxial wave equation (PWE) in Cartesian coordinates by introducing an exponential differential operator on the existing PWE solution and term it as the “finite-energy generalized Olver beam.” Applying the analytical expressions for the field distributions, we study the evolution of intensity, centroid, and variance of these beams during free-space propagation. Our findings demonstrate that these new beams exhibit a diffraction-resistant profile along a curved trajectory when specific beam conditions are met. Using numerical methods, we further demonstrate the ability to adjust the self-accelerating degree, sidelobe profile, and stability of the central mainlobe by manipulating the transforming parameters. This research presents a versatile approach to controlling beam properties and holds promise for advancing applications in various fields.
Funder
Science and Technology Program of Guizhou Province
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献