Study on the aging status of insulators based on hyperspectral imaging technology

Author:

Fan Yihan,Guo Yujun,Liu Yang,Xiao Song,Gao Guoqiang,Zhang Xueqin,Wu Guangning

Abstract

The acidic environment is one of the main factors leading to the aging of silicone rubber (SiR) insulators. Aging can reduce the surface hydrophobicity and pollution flashover resistance of insulators, threatening the safe and stable operation of the power grid. Therefore, evaluating the aging state of insulators is essential to prevent flashover accidents on the transmission line. This paper is based on an optical hyperspectral imaging (HSI) technology for pixel-level assessment of insulator aging status. Firstly, the SiR samples were artificially aged in three typical acidic solutions with different concentrations of HNO3, H2SO4, and HCl, and six aging grades of SiR samples were prepared. The HSI of SiR at each aging grade was extracted using a hyperspectral imager. To reduce the calculation complexity and eliminate the interference of useless information in the band, this paper proposes a joint random forest- principal component analysis (RF-PCA) dimensionality reduction method to reduce the original 256-dimensional hyperspectral data to 7 dimensions. Finally, to capture local features in hyperspectral images more effectively and retain the most significant information of the spectral lines, a convolutional neural network (CNN) was used to build a classification model for pixel-level assessment of the SiR's aging state of and visual prediction of insulators’ defects. The research method in this paper provides an important guarantee for the timely detection of safety hazards in the power grid.

Funder

State Grid Corporation of China

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3