Abstract
Novel diffractive surface structures are designed, evaluated, and optimized to achieve a significant increase in current density in organic solar cells. The surface relief phase gratings are patterned based on concentric rings, a Fermat’s spiral, and an Archimedean spiral, respectively, and thus diffract incident light independent of its azimuthal angle, as they all exhibit circularly symmetric diffraction patterns. The grating pillars are arranged on the rings or spirals according to periodic or deterministic aperiodic Thue-Morse and Rudin-Shapiro sequences, tailoring the desired diffraction patterns. After evaluating the surface patterns against each other and further parameter optimization, a final current density enhancement of 5 % is achieved for one of the most promising patterns, the Thue-Morse sequence on an Archimedean spiral.
Funder
Deutsche Forschungsgemeinschaft
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献