Affiliation:
1. Hefei University of Technology
Abstract
Digital shearography is a non-contact, whole-field, and high-accuracy laser-based optical interferometric method. It is widely used in the field of non-destructive testing and material evaluation. Dual-shearing DS, as the state-of-the-art method, can detect defects or measure the derivative of deformation in two sensitive directions. Most existing dual-shearing DS is realized with a bulky Michelson or Mach–Zehnder interferometer; recently, the usage of a spatial light modulator (SLM) in DS offers a new approach to designing a simple and light shearographic system. However, prior proposed SLM-based DS requires multiple shots for the phase map acquisition, with the classic temporal phase-shift (TPS) technique severely limiting its applications. This paper proposes a novel, to our best knowledge, one-shot dual-shearing DS by creating a dual-stripe pattern in the SLM. Two separate phase maps, with different sensitive directions, were acquired simultaneously via the spatial phase-shift technique. The measurement can be easily done within a single shot in its compact and light body. Moreover, the shearing amount of the two sensitive directions can be set independently and precisely. These advantages promote that the proposed system can be applied in various applications, especially for dynamic and complicated composite material testing. A detailed theory and experimental validation are described.
Funder
National Natural Science Foundation of China
Hefei Municipal Natural Science Foundation
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献