Intraocular composition of higher order aberrations in non-myopic children

Author:

Hughes Rohan P. J.ORCID,Read Scott A.ORCID,Collins Michael J.ORCID,Vincent Stephen J.ORCID

Abstract

This study examined anterior corneal, internal ocular, and total ocular higher order aberrations (HOA’s), and retinal image quality in a non-myopic, paediatric cohort. Anterior corneal aberrations were derived from corneal topography data captured using a Placido disk videokeratoscope (E300, Medmont International), and whole eye HOA’s were measured using a Hartmann-Shack wavefront sensor (COAS-HD, Wavefront Sciences). The associations between HOA’s and age, sex, refractive error, and axial length were explored using correlation analyses. Data for 84 children aged between 5 and 12 years (mean ± standard deviation spherical equivalent refraction (SER), +0.63 ± 0.35 D; range 0.00 to +1.75 D) were included, and an eighth order Zernike polynomial was fit for 4 and 6 mm pupil diameters for both the anterior corneal and total ocular HOA’s, from which internal ocular HOA’s were calculated via subtraction following alignment to a common reference axis (pupil centre). Internal ocular HOA’s were of greater magnitude than previous studies of adolescents and adults, however partial internal “compensation” of HOA’s was observed, which resulted in reduced levels of HOA’s and excellent retinal image quality. Few significant associations were observed between HOA’s and age, SER, and axial length (all correlations, p > 0.001), and there were minimal sex-based differences (all comparisons, p > 0.005). Coefficients for vertical coma (C3−1 and C5−1) and spherical aberration (C40 and C60), were most strongly associated with the visual Strehl ratio based on the optical transfer function (VSOTF), which indicated that the absolute magnitudes of these Zernike coefficients have the greatest impact on retinal image quality in this paediatric cohort. These findings provide an improved understanding of the optics and retinal image quality of children’s eyes.

Funder

Department of Education, Skills and Employment, Australian Government

Queensland University of Technology

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3