Abstract
In this Letter, we propose and experimentally validate a sparse deep learning method (SDLM) for terahertz indoor wireless-over-fiber by transmitting a 16-quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM) signal over a 15-km single-mode fiber (SMF) and a wireless link distance of 60 cm at 135 GHz through a cost-effective intensity-modulated direct detection (IM-DD) communications system. The proposed SDLM imposes the L1-regularized mechanism on the cost function, which not only improves performance but also reduces complexity when compared with traditional Volterra nonlinear equalizer (VNLE), sparse VNLE, and conventional DLM. Our experimental findings show that the proposed SDLM provides viable options for successfully mitigating nonlinear distortions and outperforms conventional VNLE, conventional DLM, and SVNLE with a 76%, 72%, and 61% complexity reduction, respectively, for 8-QAM without losing signal integrity.
Funder
Ministry of Science and Technology, Taiwan
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献